

The Integrated Application

IOP 2019

Christoph Brunner Switzerland

History of the Integrated Application

- Since 2011 we did an IOP every second year
- Initially testing individual elements of the standard with pair of vendors
 - GOOSE
 - Client / server
 - SCL
- 2015, with 10 year since publication, the basic communication had reached good level of interoperability
- Issues remained with regard to engineering and modeling
- Idea was created, to build all together a real application instead of testing between pairs of vendors

Challenges of an integrated application

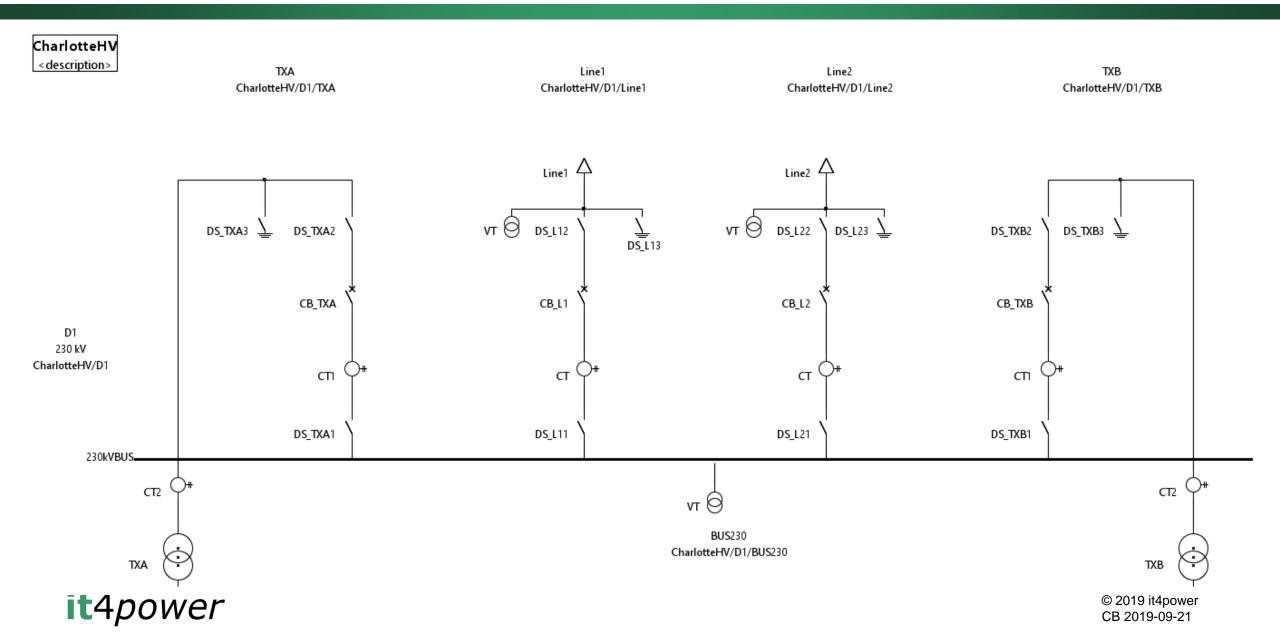
- How to produce reasonable test results?
- How to fit the variety of devices?
- How to fill the gaps the chance that you get exactly the devices you need is low
- How to deal with quality of ICD files? All the challenges of interoperability related to engineering and data modeling have to be solved before the IOP

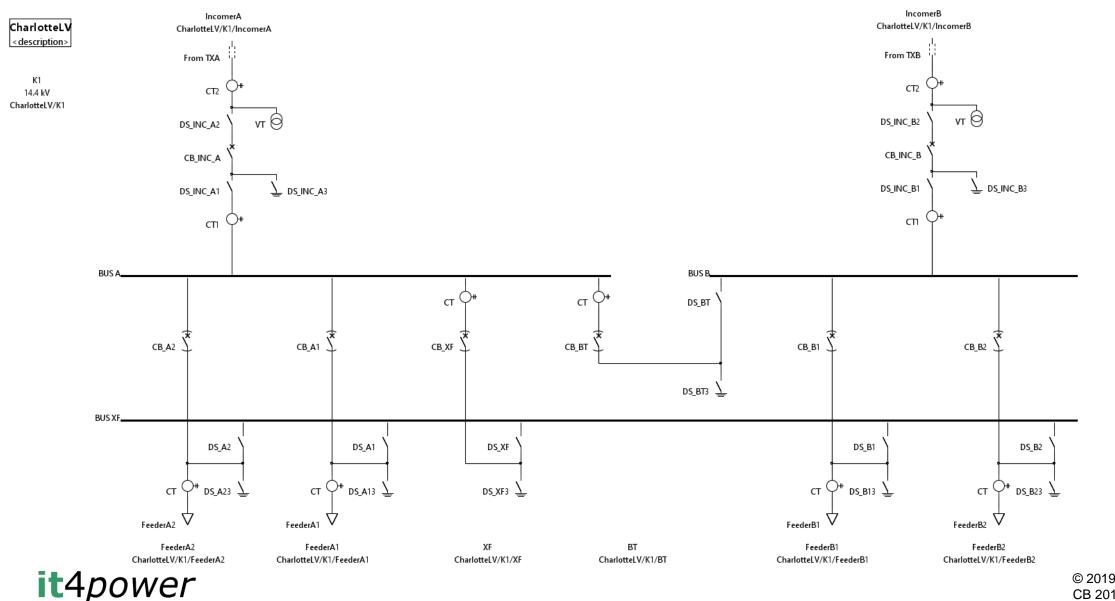
→Have realistic expectations and deal with them→Coordination is required

2017, we designed the protection and control of a multivendor substation within 2 days

- But that was during the IOP itself
- We never tested the application
- What we changed
 - We insisted to get the icd files early, checked them with various checkers and sent them back – quality of icd files has now improved
 - We could allocated devices to the application earlier
 - We allocated three days of setup build the network, discuss the IED usage with the vendors, load the scd file in IED tools and configure the IEDs

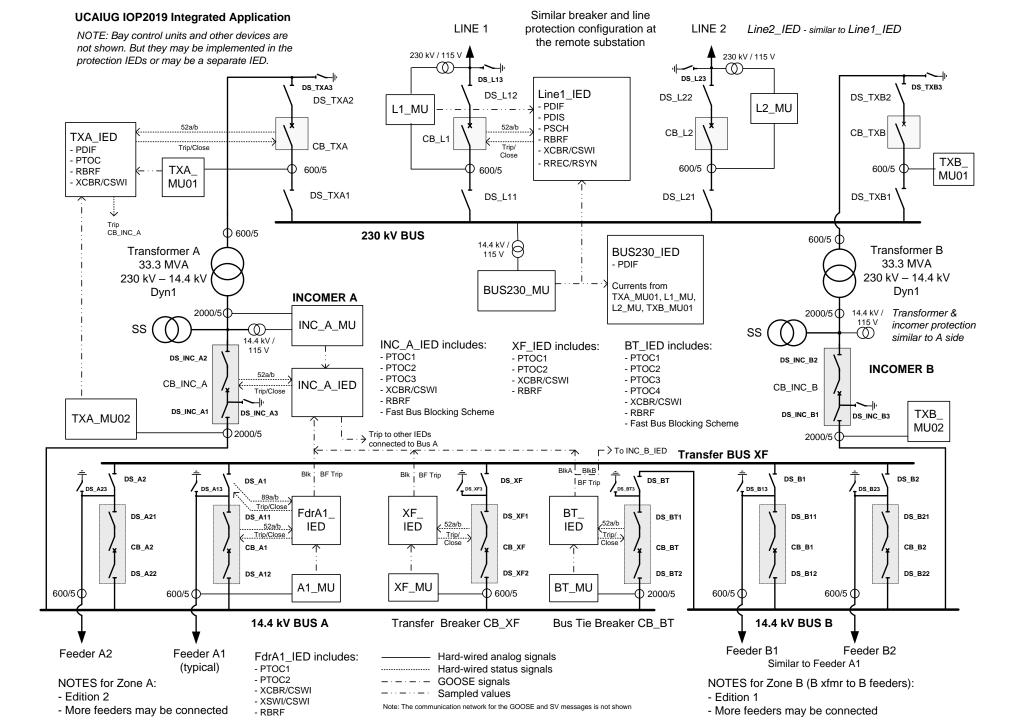
What we learned from 2017

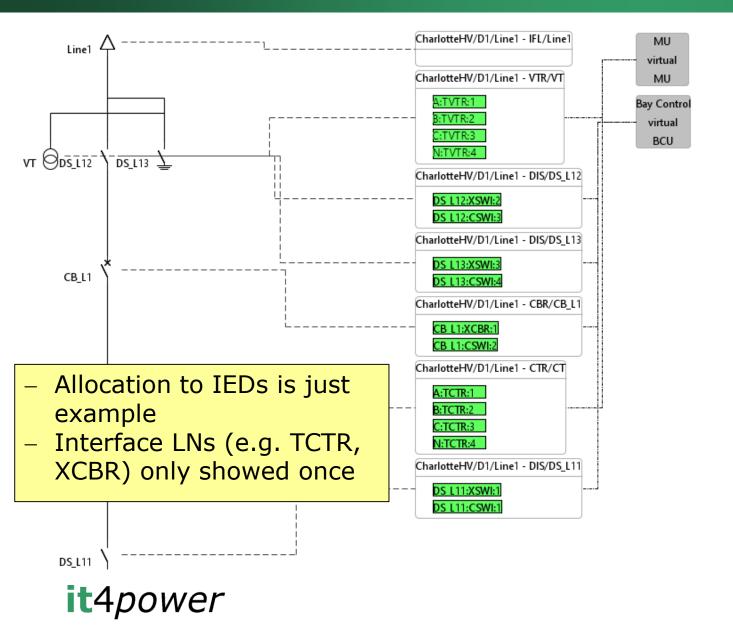

- We need to have a test plan the test specifications are not enough
 - For the preparation the integrated application should be configured by Sunday night – ready to start testing on Monday
 - For the tests themselves when are we doing tests of the application and when are we doing individual tests between pair of vendors
 - As we are building an integrated application, we shall as well test that – this requires coordination

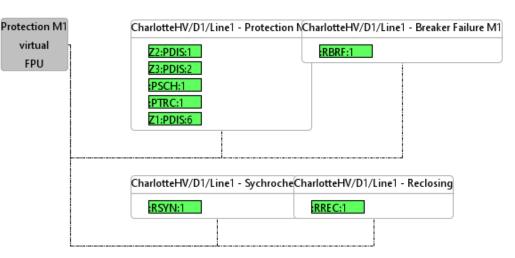

The application as a playground for engineers

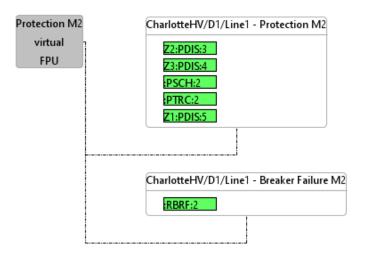
- What are the requirements for an application to be used?
 - Shall be realistic
 - Shall be scalable depending on the number of participants
 - Shall allow for many GOOSE messages ideally every device can publish and subscribe GOOSE messages
 - Shall have enough room for merging units
 - Shall be simple from the perspective of simulation of process
 - Shall be dividable in smaller segments to support individual tests
- Application is based on substation from Entergy
 - HV part with to feeders and two transformers
 - LV part with 2 bus sections connected to the two transformers, multiple feeders, a transfer bus and a bus tie

The HV part

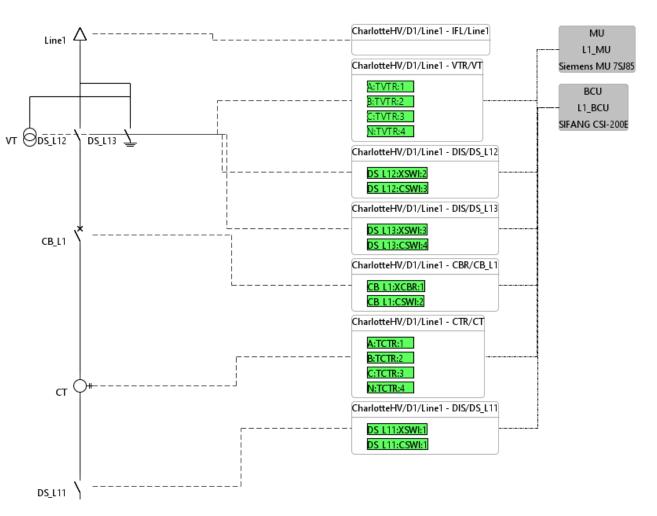

The LV part

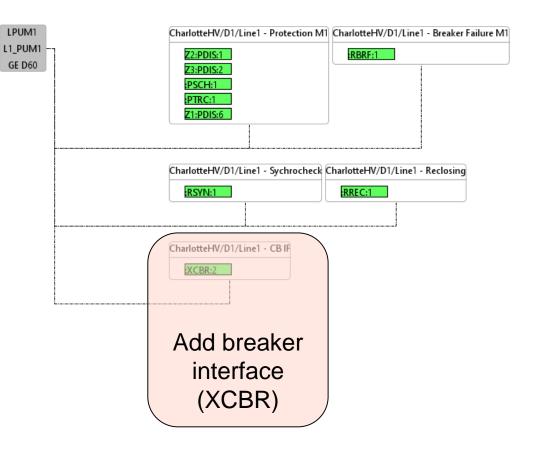

Design steps (1) – Specification


Identify


- Required functions
- Possible allocation to IEDs
- Interactions between functions

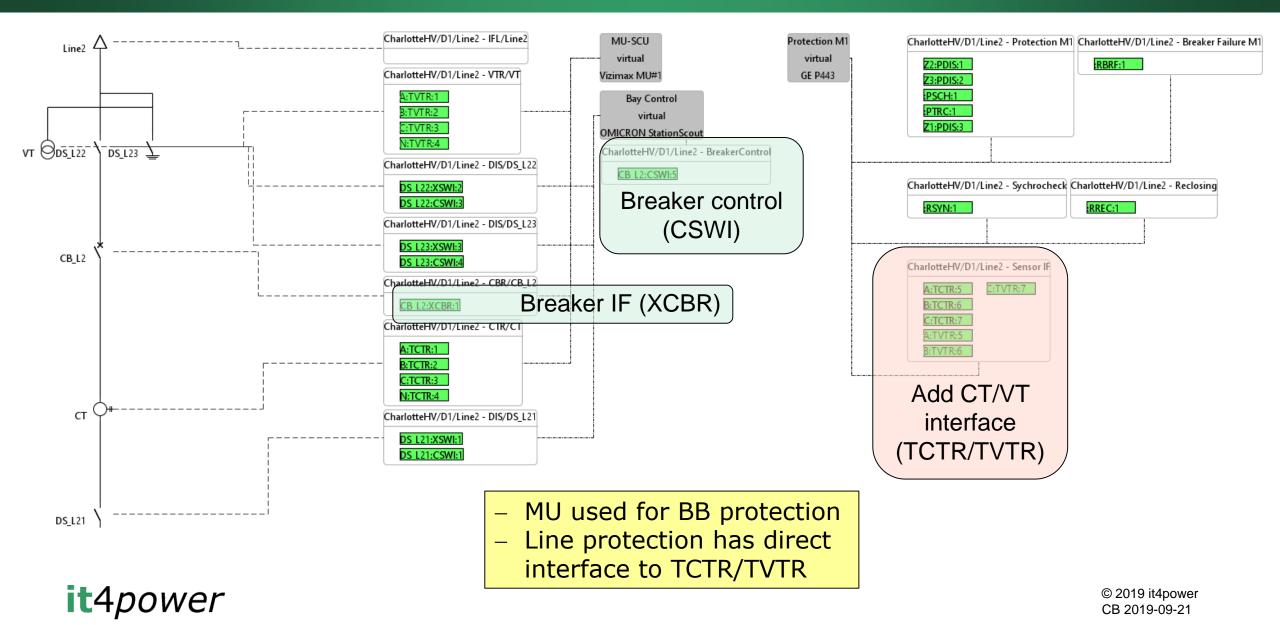
Function Specification – Line 1




Design steps (2) – Device allocation

We have all variations

- No process bus, where protection devices are wired to the CT/VT and the circuit breakers
- Merging units that supply sampled values
- SCUs (Switchgear control units) that interface to the breakers
- GAPs are filled with simulation equipment
 - Simulation of communication
 - Functional simulation within technical limits


Variations – MU but direct trip from PU

it4power

Variations – PU with no SV interface but SCU

Interaction between functions

Sending Device	Signal										В										
		L1 BCU	L1 PU-M1	L2 MU-SCU	L2 BCU	12 PU-M2	TXA MU01-SCU	TXA BCU	TXA PU-M1	TXA PU-M3	TXB MU01-BCU	TXB PU-M1	TXB PU-M2	TXB PU-M3	NH 0622NB	IncA PU-BCU	IncB. BCU	Joce PU	BT PU-BCU	Substation 2	
Bay L1																					
MU	TCTR.AmpSy. TVTR.VolSy.	x	х												x						BCU may subscribe for MMXU
BCU	DIS_L11XSWI.Pos														х						
PU-M1	RBRE.OpEx			х			х				х									х	
	RREC.OpCla	х																			
	PSCH.Op																			х	
	RSYN.Rel	х																			
Bay L2																					
MU-SCU	TCTR.AmpSv. TVTR.ValSv.				x										x						BCU may subscribe for MMXU
	XCBB.Pos				х	х									х						
BCU	CSWI.OpOpn CSWI.OpCls CSWI.SelOpn CSWI.SelCls			x																	
	DIS_L21XSWI.Pos														х						
PU-M1	RBRE ODEX	х					х				х									х	
	PIRC.Tr			х												1	<u> </u>				
	BREC OpCla			Х												\bot					
	PSCH.Op																			х	

Design steps – Communication network

- Decided to have Station bus and sampled values on a separate process bus
 - Protection devices using sampled values connect to both
- Segregation with VLANs
- IOP is particular, as we have devices that do HSR, others that do PRP
 - We have a PRP process bus and an HSR process bus each of them with own VLAN ID
 - In limited cases, SV have to go from one to the other this uses a dedicated VLAN ID

- Load icd files and create an instance
- Identify which logical nodes are to be used for what function – create mapping based on that
- Create GOOSE / SV messaging
- Define reporting
 - Typically in a IOP, we have more clients than reports are supported by the IEDs

Implementation fast bus blocking scheme

CharlotteLV/K1/FeederA1/Protection	CharlotteLV/K1/BT/Protection
Start CharlotteLV/K1/FeederA2/Protection Start	FBBStartFeederB1 P51_PT FBBStartFeederB2 P51_PT FBBStartFeederA1 I46_PTO
CharlotteLV/K1/FeederB1/Protection Start	FBBStartFeederA2 I46_PTO FBBStartXF I46_PTOC2
CharlotteLV/K1/FeederB2/Protection Start CharlotteLV/K1/XF/Protection	FBBStartFeederA1 S1PTOC13 FBBBlockA S1PTOC13 FBBStartFeederA2 S1PTOC13
Start CharlotteLV/K1/BT/Protection	FBBStartXF S1PTOC13
BlockincB	FBBBlockB OC_PTOC1 FBBStartFeederB1 OC_PTOC1 FBBStartFeederB2 OC_PTOC1

Design steps – define settings for the functions

- Line parameters and related settings
- Timers for protection functions and breaker failure
- Recloser details

Design steps – plan for simulation of process

- Analog values need to be injected to MUs and PUs not supporting SV
 - Use traditional protection equipment
- Breakers and switches need to be simulated
 - Use GOOSE message with GGIO emulating the contacts between the device (PU/SCU/BCU) interfacing the equipment and a simulation tool

Test plan

Phase 1– Test the integrated application design (Monday)

- Verify that every IED is configured with the expected data model and that the data can be reported to the client
- Verify that the GOOSE / SV messages are present as configured
- Verify that the GOOSE / SV messages are received as expected
- Scheme testing
- Phase 2 Individual tests (normal behavior) (Tuesday)
- Phase 3 Maintenance tests (Wednesday AM)
 - Reconfiguration
 - Verification (individual)
 - Scheme testing

Test plan

- Phase 4 Individual tests (Wednesday PM)
 - Including IED failure / power down
- Phase 5 Time tests (Thursday AM)
- Phase 6 Network testing (Thursday PM)
- Phase 7 individual testing (Friday)

- Line 1 fault with successful reclosing
- Line 2 fault with reclosing on fault and permanent trip
- TXA fault with successful trip
- TXB fault with failing HV breaker
- BUS230 fault
- Feeder A1 fault BT open
- Bus A fault BT open
- Feeder B1 fault BT closed, with failing breaker B1
- Bus B fault BT closed
- Feeder A2 fault on transfer bus BT open

it4power

christoph.brunner@it4power.com

